Information and Communication Technologies (ICT) and the Internet, specifically, are a relatively recent phenomenon. With unprecedented speed, the Internet has revolutionized the manner in which we communicate and relate to us, becoming an essential part of our life. Spending plenty of time online only develops into a problem when it absorbs excessively of individuals’ time, causing them to neglect relationships, work, school, or other important things in life. In Spain according to the data provided by the General Media Study (EGM 2016), the number of Internet users has grown from 1.7 million in 1998 to 27,349 million in mid-2014, with more of 64% households connected to the network and with forecasts of growth still further in the coming years. This growing trend has awoken the interest for studying possible risks associated with Internet use. However, which are these risks? How can we assessment them? Is it relevant to speak about Internet addiction or is it more convenient speak about the problematic use?

As reviewed in Laconi et al. (2014) we can conclude that there are two larger models that have attempted to answer these questions, on one side, are the models of Young (1998a) would evaluate aspects related to substance abuse and pathological gambling and on the other hand, the model of Davis (2001) which relates cognitive-behavioral aspects of problematic Internet use.

Acknowledgments. The authors would like to acknowledge Dr. Lucia Garcia (London School of Economics and Political Science), Dr. Stephany Hess (Faculty of Psychology, ULL) and Dr. Eva Torralba (University of Castilla-La Mancha) for constructive discussion and critically evaluation the paper. We express our warmest appreciation to the respondents who participated in this study.

Author Disclosure Statement. The authors declare that they have no competing financial interests.
can lead to a loss of skills in personal exchange (personal communication practice) and facilitate the construction of fictitious social relations. This has not been accompanied by a consensus on how to evaluate and what are the relevant criteria to be taken into account. Currently, the official position of the American Psychiatric Association (APA) remains unclear regarding the Internet Addiction (IA) as we know through his publication in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V), and it throws a lot more confusing when they include pathological gambling as a diagnostic category but not the online form. Thus, the evidence provided to this point is not satisfactory to validate the proposed Young’s construct, which considers substance abuse and compulsive gambling share similar characteristics with IA. Likewise, the concept of IA has been suggested as a justification for uncontrollable and harmful use of this new technology (Echeburúa - Corral 2010).

On the other hand, the model of Davis (2001) has received insufficient attention, and few studies in Spain have focused on assessing the specific facet problematic Internet use (Beranuy et al. 2009; Casas et al. 2013; Labrador et al. 2013). Thus, we find irrelevant to set a taxonomy of possible behaviors that could carry out on the Internet, unless you have different consequences for life. In this sense, it seems wrong to confuse hardware Internet access (computer or smartphone) with behavior showed online (chatting, studying, working, shopping) because one thing is how to access the Internet and another thing for what. Instead, we feel that the classical pencil and paper methods weigh a number of drawbacks such as lack of ecological and sample validity direct consequences for the external validity of the data.

The literature on the psychometric aspects is considerably plentiful as the review and appointment followed Laconi et al. (2014) or the review of our Spanish national level. A few studies that have tried to integrate holistically the different contributions made up to now, in this sense are also few studies that use methodology online to guarantee the external validity of the data and last but not least important is the low consensus on the terminology used for this phenomenon. It is variously known such as: Internet addiction (Young 1998b); Internet addiction disorder (Grohol 2005; Simkova 2004); pathological Internet use (Davis 2001); problematic Internet use (Shapira et al. 2000, 2003) etc., for a comprehensive overview of research on IA disorders and theoretical considerations from a practical perspective see Cash et al. (2012), just to name a few of the most frequently used terms. Thus, after the above, it is more relevant than ever to test the theoretical validity of the data.

Thus, this study has a threefold aim, firstly, following the proposal of Demetrovics et al. (2008), to develop an integrated questionnaire to measure reliably IA and at the same time able to discriminate the Internet-addicted people, from which are not Internet addicts. Secondly, develop a preventive tool in addition to a diagnosis tool, taking into account both, the risk and the protective factors and third, to study IA in the young population.

1 For greater depth on the subject, see Carbonell’s editorial (2014).
By the technology offered by Google Docs., we carried out two independent studies. The similar method use for distributing the surveys. Firstly, an event was created on Facebook of open-ended type where friends were invited to participate and spread the event after they are filled up and simultaneously the survey was distributed in different virtual platforms as the campus of Spanish Open University by applying the same procedure described above. The strategy of sampling used by the authors was the «snowball» due to the low cost; the opportunity to guarantee at least that the sample has a basic knowledge of ICT and social media and at the same time allowing us to locate hidden population like people with IA. Thereby, the population sampled came from their natural environment, i.e., the Internet, and they have a minimum knowledge of ICT and social media.

2.1. The participants: a first overview

This is an online cross-sectional study consisting of an initial study in which 196 people participated, 70 men and 126 women. The average of the respondents is 25.64 and a standard deviation of 7.24 and a second study in which 268 people participated, 102 men and 188 women with an average age of 25.78 and a standard deviation of 8.46.

In terms of experience surfing on the Internet, the participants of the first study told that their former experience was around 14.03 years old and with a standard deviation of 6.005, and they began to use the Internet around the 15.15 years old with a standard deviation of 6.076. The respondents of the second study told that their first experience surfing on the Internet was around age 14.96 and with a standard deviation of 6.8, and they began to surf on the Internet around age 15.91 with a standard deviation of 6.86.

The following results presented jointly because the authors could find non-significant differences between the first and second study. In this way, the authors present an average of both studies (n = 464), 18% of them are not studying currently against 82% who do. On the other hand, between 36-50% of participants expressed an advanced level on ICT; however, only 50% of them have received any kind of training of ICT. In this regard, the house is the preferred method for surfing Internet by 87% of participants, of which 96% have their private computer and 86% have their own smartphone, just 35% said that they are sharing their computer with family or friends. Regarding the motivations of use, 53% said usually surfing on the Internet, mainly for socializing or entertaining, 33% to study, 14% to work or other uses.

Again, the authors are presenting the results from both studies jointly because the differences found between first and second study are non-significant. Focusing on the social aspects, we note that 16% of respondents have least 100 contacts added to their social networks, 20% between 100-150 contacts, 18% between 150-200 contacts, 10.5% between 200-250 contacts and lastly a 35.5% aggregate more than 250 contacts. Finally, one aspect in which we were interested in was the exploration of the subjective perception through the usage made by users of social networks, compared to the num-
ber of hours objectively (daily, weekly or a connection) that manifest spent engaging the Internet. Therefore, 62% of the sample said that they used their smart phone as much as a personal computer, 21% claim they use it fairly, 7% use something, and 10% manifested they do not use anything. However, these data contrast with the number of hours; they say to use the Network, as it is visible in following chart.

Table 1 – Time spent on the Internet by respondents

<table>
<thead>
<tr>
<th>Hours</th>
<th>Daily (not working or studying)</th>
<th>Weekly</th>
<th>One longest time surfing on Internet (not working or studying)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>66%</td>
<td>25%</td>
<td>24%</td>
</tr>
<tr>
<td>3-6</td>
<td>27%</td>
<td>25%</td>
<td>28%</td>
</tr>
<tr>
<td>6-9</td>
<td>6%</td>
<td>15%</td>
<td>29%</td>
</tr>
<tr>
<td>More of 9</td>
<td>1%</td>
<td>35%</td>
<td>19%</td>
</tr>
</tbody>
</table>

2.2. The instrument

Firstly, we developed an exploratory questionnaire obtained from a brainstorming session where participants (students from Sociology degree in their second year) along one hour debated topics related to personal feelings and beliefs about the Internet, together with the psychometric review, resulting in a 66-items list that measured IA added 33 socio-demographic variables. The online questionnaire does not allow its fulfillment of a collective way. Although its administration was electronic, participants could print the questionnaire for delivery later. However, no individual provided this option. Our estimated time to fill out ranged from 10 and 15 minutes. The questionnaire consisted of a Likert scale were coded from 1 (almost never) to 4 (almost always). At the time of analysis, we reverse some items 51, 52, 54, 55, 56, 57, 59 and 70 to avoid entrainment effect, thus when correcting is necessary to change the direction of response, and a low score of these items corresponds to a high score of addiction compared with the rest of the items.

Finally, to guarantee the validity of criterion, 7 items (80-86) belonging to the Escala de la Adicción a Internet de Lima (EAIL) were used by Lam-Figueroa et al. (2011) that evaluates dysfunctional symptoms and characteristics in a sample of young people (average of 14 years). According to authors, the psychometric analysis of the instrument showed a Cronbach’s alpha coefficient of .84, and the dimensional analysis yielded a two-dimensional structure that explained up to 50.7% of the total variance.

By IBM SPSS v 22 (2013) perform all the analysis and the adjustment of IA questionnaire was done by adding up the total items. Once we establish the factor structure and the absence of reliable measures to make a cut between users who abused those who did not, we proceeded to calculate our own measure. Through the answers in our sample representation (n = 196), the sum of the questionnaire was calculated and then divided by the total of the items previously reversed the negative items 51, 52, 54, 55, 56, 57, 59 and 70. Second, assuming that the probability of belonging to one group or
another group is the same for all subjects, we split the sample equally into three groups (non-problematic use of the Internet; problematic Internet use and normal use of the Internet), expecting to find 65 subjects per group, that is, and 33%.

With statistical Cronbach’s alpha measured the reliability of the administered questionnaire and through the principal component analysis explored the validity of the construct and according to our theoretical approaches; we chose a method of oblique rotation, specifically the direct oblimin rotation. Rates below .6 were deleted and then items removed if their coefficients loaded into more than two components. In this way, the division between the items of greater weight and those of the smaller squared weight should have a value exceeding two to be included in the questionnaire.

Likewise, to study the criterion validity execute a discriminant analysis to predict group membership, using the stepwise method and the Wilks’s lambda statistic. In deciding whether the discriminant functions were adequate, at least 90% of the sample should be classified correctly. Lastly, a multiple correspondence analysis clearly shows useful to know the possible relationship between the problematic use of the Internet, and the sociological-demographic variables studied at the theoretical level. Similarly, whether it is feasible to establish a preventive profile on the problematic use of the Internet. Including sociological and demographic variables, we established two criteria: the first was goodness of fit and the second a variance upper to .30 in the model.

III - THE FIRST APPROACH RESULTS

The first step was to measure the reliability of the questionnaire on IA administered, found Cronbach’s alpha .90 for the total of the questionnaire (66 items). The 66 items showed a moderate correlation of .38 and a standard deviation of .15. On the other hand, the seven items belonged to EAIL showed a reliability of .74 and a low correlation with the overall score, ranging from .05-.52 with a mean correlation of .33 and a standard deviation of .12. Finally, the total reliability without the items that belonged to EAIL was of .89, in this way the EAIL’s contribution was of .10.

The criterion validity was studied through the reliability using internal consistency between questionnaires (Cronbach’s alpha). Thus, the reliability between the EAIL and 66 items was of .74 and .64 without items from EAIL, ensuring an enough criterion validity. The range of scores varied between 1.11 and 3.22, with a mean of 1.70 and standard deviation of .40. We classified the items based on the revised theories, most of them use four-factor model, also studies analyzed to explain IA. Though we initially opted for a three-factor solution to the most-used tetra-factor solution, we thought it best expressed the addictive reality. Thus, the total variance explains 28.74%, made the suitable adjustment factor analysis was repeated, implying an increase of 2.82% of the variance. Therefore, items that represent a further 31.56% of the combined variance would form the factor model: **Clinical symptoms** included 22 items with weights ranging between .70 and .35 explains 17.60% of the variance. This initial factor consisted of items related to the loss of control, emotional distress and psychological dependence. **Technophilia** included 18 items whose weights range between -.67 and -.32 explains
7.64% of the variance. It involved items related to technological stuff. Technology can manifest itself in different means going from an irrational drive to buy everything that is on the top of the scientific advancement, and Sociability (10 items whose weights range between .77 and .39 explains 6.32% of the variance).

The factor model found in the first study was reorganized in a more parsimonious model. Thus, the former factor labeled Sociability disappears. The factor called Clinical symptoms is divided into two factors, the first factor that we rename as Use of time consisted of 9 items with factor loadings between .75 and .49, which explain 32.66% of the variance and a second factor renamed as Escape from reality consisting of eight items with factor loadings between .86 and .34 explaining 7.78% of the variance. The factor called Technophilia remains and comprised of two items with factor loadings between .76 and .63 explaining 6.79% of the variance. Therefore, of the 66 initial applied items, only 50 remained.

We finally carried out a multiple correspondence analysis. The first step confirmed the goodness of fit through to chi-square test. In this way, we could found differences between problematic Internet use and current age, \(X^2(4)=37.53, p<.001\); sex, \(X^2(2)=9.90, p=.007\); Smartphone use, \(X^2(6)=22.75, p=.001\); Internet use, \(X^2(6)=20.34, p=.002\); who pays the bill, \(X^2(6)=17.50, p=.007\); reasons for preferential use, \(X^2(8)=41.90, p<.001\); hours per day, \(X^2(6)=33.50, p=.001\); hours per week, \(X^2(6)=18.92, p=.003\); highest amount of time in a connection, \(X^2(6)=71.40, p<.001\); number of aggregates friends, \(X^2(8)=34.66, p<.001\). However, we couldn’t found studying away from home, \(X^2(2)=0.70, p=.97\); currently working, \(X^2(2)=2.73, p=2.56\); training computer use, \(X^2(2)=0.91, p=.64\); subjective level of computer use, \(X^2(6)=4.90, p=.56\); and computer use, \(X^2(6)=10.50, p=.10\).

Once confirmed goodness of fit, proceeded to identify the relationship between Internet use and sociodemographic variables. Therefore, we obtained a two-dimensional model that explained 77% of the total variance. The first dimension explained a 44% variance, and the second dimension explained a 33% being the first dimension the most important. Finally, the use of Internet is associated with age, hours per day, and the greatest amount of time in a connection but not with the other variables. Thus, the most important variable is the largest amount of time in a connection that has an inertia of .64, followed by Internet usage with a .49, hours per day with .44, and age .42. Thereby, the problematic use of Internet is more associated with young people and more hours of Internet surfing per day and in one connection compared to non-problematic Internet use or normal use. Therefore, in this first study we made up the final questionnaire with the 50 items, from these we chose to test 28 of them based on the following criteria: 1) higher discrimination index, 2) minor deviations, 3) items were satisfactory discriminant analysis, 4) the concern of authors.

3.1. The results of second study

In order to select those items that best would identify differences between individuals, we calculated the standard deviation and discrimination index of each item. The discrimination index was obtained by the correlation coefficient between the item score,
and total score corrected for the dimension to which it belongs. Correlations between the item-dimension corrected revealed an average degree of homogeneity, since most of the coefficients reached scores above .30. Standard deviations also showed the adequacy of the items to submit all deviations higher than unity. The 28 items showed an initial reliability $\alpha = .87$, having a moderate correlation with the overall score, ranging from .10 to .69 with an average correlation of .50 and a standard deviation of .14. Thus, 7 items belonged to EAIL showed a reliability of .76 and a low correlation with the overall score, ranging from .10-.61 with a mean correlation of .38 and a standard deviation of .12. Finally, the total reliability without the items that belonged to EAIL was of .80, in this way the EAIL’s contribution was of .07. The criterion validity was studied through the reliability between questionnaires using the statistical Cronbach’s alpha. In this sense, the reliability between the EAIL and 28 items were of .84 and .75 without items from EAIL, ensuring an enough criterion validity.

Likewise, we study the validity of construct through a principal component analysis, using oblimin rotation. Measurement of the Kaiser-Meyer-Olkin (.80) and Bartlett’s sphericity test ($p < .001$) allowed us to apply the factor analysis procedure. Finally, the 28 items were analyzed with a result of 18 significant items and a solution of six factors, instead of a previous solution of three factors. The total variance explained in all the components was 63.30%. The primary factor called *clinical symptoms* consisting of five items with weights ranging between .74 and .68 explains 28.0% of the variability. The second factor called *technophilia* consisted of three items whose weights range between .78 and .69 accounted for 8.44% of the variance. The third factor called *sociability* involved four items whose weights range between .82 and .70 explains 7.97% of the variance. Fourth labeled *risk behaviours* consisted of two items with weights comprised between .84 and .66 and explaining a variance of 7.05%. A fifth factor, named *thoughts* contained three items weighing between .79 and .63 and explaining a variance of 6% and sixth factor called *positive behaviours*, with only one item with a weight of .91 and explains 5.78% of the variability (see Table 2).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Original 66-items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81 I feel worried or I image to be surfing the Internet when I am not doing it</td>
</tr>
<tr>
<td></td>
<td>93 Frequently I feel angry or yell if someone disturbs me while I am surfing the Internet</td>
</tr>
<tr>
<td></td>
<td>80 When I am not surfing the Internet, I image how will be the next time</td>
</tr>
<tr>
<td></td>
<td>95 Sometimes I feel tense or agitated when I am not surfing the Internet</td>
</tr>
<tr>
<td></td>
<td>82 When I left to surf the Internet, I feel that I need to do it again</td>
</tr>
<tr>
<td>2</td>
<td>63 Frequently I check my mobile despite I am talking with other people</td>
</tr>
<tr>
<td></td>
<td>62 I usually check my email over and over despite I know that I do not have any new email</td>
</tr>
<tr>
<td></td>
<td>64 I feel unwell if I cannot surf the Internet</td>
</tr>
</tbody>
</table>

(follows)
We proceed to perform the discriminant analysis, including all 18 items were satisfactory factor analysis, the most important 15, 12, 23, 8 and 17. We made the first discriminant function with a canonical correlation of .864 and Wilks’ lambda of .225 significant, $X^2(24) = 420.377$, $p < .001$, and a second function, we obtain a canonical correlation of .340 and Wilks’ lambda of .884 significant, $X^2(11) = 34.582$, $p < .001$. As a result, the function one indicates that subjects classified as high addiction tend to have higher scores on the 12 items extracted versus subjects with low ranked addiction the 84.1% of the sample was classified properly, making mistakes only adjacent groups. Thus, we can say that the 12 items entered as discriminating very accurately.

Lately, with the intention to confirm the profile found in the first study we repeated the multiple correspondence analysis under the same criteria and procedures. Thus, we could found differences between problematic Internet use and current age, $X^2(4) = 14.14$, $p = .003$; sex, $X^2(2) = 7.43$, $p = .024$; Internet use, $X^2(6) = 19.90$, $p = .003$; hours per day, $X^2(6) = 26.67$, $p < .001$; hours per week, $X^2(6) = 15.37$, $p = .018$; highest amount of time in a connection, $X^2(6, 268) = 13.18$, $p = .040$. However, we could not found differences between the use of the surfing on the Internet and smartphone use, $X^2(6, 298) = 1176$, $p = .067$; reasons for preferential use, $X^2(8, 268) = 1540$, $p = .052$ and number of aggregates friends, $X^2(8, 196) = 16.23$, $p = .093$.

Once again, we verified the results of the first study. The most important variables were hours per day, the highest amount of time in a connection, problematic internet use and current age and not the rest of variables. However, given that our aim is to achieve a model as simple as possible with a big amount of variance remove the current age. Thus, we obtained a model with two dimensions that explained a 95.22% of the variance, increasing a 20% of total variance one time to remove current age. The first dimension explained a 57% of the variance and the second dimension explained a 38% being the first dimension the most important. Finally, we can observe on Figure 1 how the problematic internet use (GREXT) is more associated with more quantity of hours surfing on the Internet per day (hours per day) and in one connection (highest amount) in comparison with non-problematic Internet use or normal use.
Finally, we test the reliability for the complete scale, obtaining $\alpha=.87$. The last 18 items showed a moderate correlation with the overall score, ranging from .1 to .66 with an average correlation of .55 and a standard deviation of 0.15. Therefore, we can say that the instrument consists of 18 items has shown satisfactory for determining Internet addiction, discriminating addicts from non-addicts (see Table 3).

Table 3 – Final Scale of the Internet Addiction

<table>
<thead>
<tr>
<th>Nº item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I feel worried or I image to be surfing the Internet when I am not doing it</td>
</tr>
<tr>
<td>2</td>
<td>Frequently I feel angry or yell if someone disturbs me while I am surfing the Internet</td>
</tr>
<tr>
<td>3</td>
<td>When I am not surfing the Internet, I image how will be the next time</td>
</tr>
<tr>
<td>4</td>
<td>Sometimes I feel tense or agitated when I am not surfing the Internet</td>
</tr>
<tr>
<td>5</td>
<td>When I left to surf the Internet, I feel that I need to do it again</td>
</tr>
<tr>
<td>6</td>
<td>Frequently I check my mobile despite I am talking with other people</td>
</tr>
<tr>
<td>7</td>
<td>I usually check my email over and over despite I know that I do not have any new email</td>
</tr>
<tr>
<td>8</td>
<td>I feel unwell if I cannot surf the Internet</td>
</tr>
<tr>
<td>9</td>
<td>I had issues at my workplace and/or studies due to surfing the Internet</td>
</tr>
<tr>
<td>10</td>
<td>I often waste time of my job and/or my studies due to surfing the Internet</td>
</tr>
<tr>
<td>11</td>
<td>I often say myself «Just a few more minutes» when I am surfing the Internet</td>
</tr>
<tr>
<td>12</td>
<td>I usually feel guilty for spending too much time surfing the Internet</td>
</tr>
<tr>
<td>13</td>
<td>Sometimes I have been awake all night long surfing the Internet</td>
</tr>
</tbody>
</table>

(follows)
Occasionally I have preferred to stay at home surfing the Internet instead of doing other activities
15 Frequently I block annoying thoughts about my life and I replace them for pleasant thoughts about surfing the Internet
16 I surf the Internet to run away from my issues
17 I have limited my time surfing the Internet because I abuse it previously
18 I am a person who likes to be busy every day

IV - DISCUSSION

The development of a test that attempts to capture Internet addiction is a complex process. Its recent appearance motivates that none of the major diagnostic manuals such as the DSM-IV-TM (American Psychiatric Association 2000); even ICD-10 (World Health Organization 1992) include Internet addiction as a mental disorder. This is significant and has its purpose in the lack of consensus in defining what Internet addiction is and how we measure it. A clear example is the number of questionnaires and therefore different results (e.g.: Beard 2005, Caplan 2002; Demetrovics et al. 2008). In order to investigate the issue of the extent of Internet addiction, we have developed two investigations that seek to deepen and clarify such issues.

Many studies have considered Internet addiction, and two are the most interesting aspects of this field of research. Firstly, focus on the adult population and secondly only population familiar with the Internet and social networks are used. While it is true that exist a parallel to the sample on line control group, we understand that this should not detract from the validity of our study, since the on line surveys are subject to the same rules and standards as those made by the telephone, personal interview, or in writing (German Association for Internet research 2001). Our expectations suggest that the results found in our study are similar to those found in any classic paper and pencil research because today, most households have Internet access and the digital divide is narrowing (EGM 2016).

Initially, we started with a questionnaire with 66 with good psychometric properties and high criterion validity, however, suffered moderate construct validity and appeared extremely large. After several tests to obtain the best possible fit, we present a questionnaire consisting of 18 items that maintain its initial psychometric properties, in addition to its high criterion validity, achieving a significant increase in its explanatory power. Specifically, we dare to say that Internet addiction questionnaire presented as an excellent diagnostic tool, allowing discrimination of people addicted to the Internet that are not.

In this order, we can say that the use of the Internet begins to be problematic when users, especially young, are surfing the Internet for more than 3 hours per day and their highest amount of time in one day has been for more than 9 hours. Furthermore, we could find no-differences between computer and smartphone access, pointing that it is wrong to confuse hardware Internet access with behaviour running online (chatting,
studying, working, and shopping). Thus, the further researches should be focused on what people do when they are surfing on the Internet. Hence, our research contribute to finding two main motivations, first one *Escape of reality* which is related to avoiding issues in the real life and second one, *Technophilia* which refers generally to a strong enthusiasm for technology, especially new technologies such as personal computers, the Internet, mobile phones and home cinema.

Originally, in our primary finding we opted for a three-factor model. However, best explanation of the variability is achieved with a six-factor structure differing from a widely used tetra factorial structure, this decision based on accomplishing a parsimonious and holistic questionnaire explains as much variance as possible. Being consistent with those found by Chang - Law (2008) who extracted six-factors through a confirmatory factor analysis. In addition, the questionnaire presented in this study, in agreement with those found in other studies (Beramuy et al. 2009; Brenner 1997; Widyanto - McMurran 2004) maintains similar or higher indices of internal consistency.

Moreover, some research done, to this point has focused on finding orthogonal factors (Widyanto - McMurran 2004); however, we have chosen to seek oblique factors, as we understand that Internet addiction is a multifactorial construct and related components.

Additional aspect to highlight is the high discriminative ability it has shown at all times, achieving rated with a proportion of over 80% addicted to subjects who are not making mistakes and only adjacent groups. This aspect indicates that the addicted subjects clearly differentiated from those that are not in a set of critical items related to the three factors found in the first study. In light of the results, we can say the Internet addiction is multifactorial construct associated with an empirical basis for asserting that indeed people addicted to the Internet differs from those that are not characterized the first. Subjects obtain higher scores on the factor’s measuring time use, avoidance of reality and technophilia.

According to the results set up in both studies, suggest that the main feature of Internet addiction is a *loss of control by the subject*. It understood as a *loss of perception of time*, which also provides a *dependence relationship*. Likewise, an *increase of tolerance* (progressive need to increase the dose) occurs and incorporates serious interference in everyday life, the latter aspects would be factors related to *escaping from reality* and *technophilia*.

Our study has several limitations, namely the weakness: the method of convenience sample, the sample size, the questionnaires were answered anonymously but the identity of self-reported answers was not assured, and the respondents might not have honestly stated, thus a reporting bias was possible; our main intention was exploratory nonetheless.

V - CONCLUSIONS

One of the goals in our study was to help clarify the controversy surrounding the question of the extent of Internet addiction, from a holistic and integrative perspective.

Following the recommendations proposed by Demetrovics et al. (2008), we have achieved our objectives: firstly, we have developed an excellent preventive and dia-
Diagnostics tool for assessing the Internet addiction, discriminating between people addicted to the Internet that are not. Secondly, to know when the Internet usage begins to be problematic, i.e. when people, especially young, start to spend more than 3 hours per day and their highest amount of time in one day has been for more than 9 hours. Moreover, through our first factorial analysis propose that the risk factors associated to Internet addiction were: 1) Spent too much time surfing on the Internet (Use of Time), having as consequence lack socialization, avoiding to study or work..., 2) Use Internet for running away of problems (Escape of reality) and 3) High level of interest on ICT (Technophilia).

Definitely, our questionnaire, according to our knowledge this seems to be the first approach showing high reliability and consistency, focused on what people do to access the Internet and not how they access to it versus other questionnaires. Furthermore, it throws a holistic and ecological approach, and it is based young population. Probably, the most logical argument is that proposed by Block (2008) to suggest further research.

Taking into consideration, future research should focus on the identification associated with the usage of the Internet and the negative consequences that interfere with personal life, family problems, work and social relationships. An urgent demand is to perform studies focusing on the comparison of young and adult population.

JUAN MARTÍNEZ TORVISCO DARÍO GARCÍA RODRÍGUEZ
University of La Laguna, Santa Cruz de Tenerife
Service Manager, Real Focus-Dimensions, London

REFERENCES

Simkova B. - Cincera J.
(2004)
Internet addiction disorder and chatting in the Czech Republic, «CyberPsychology & Behavior», 7(5), pp. 536-539.

Whang L.S. - Lee S. - Chang G.
(2004)

Young K.S.
(1996)

(1998a)
Caught in the Net: How to recognize the signs of Internet addiction and a winning strategy for recovery, John Wiley & Sons, New York.

(1998b)

(1999)

Yuen C.N. - Lavin M.J.
(2004)