Minimum sample sizes in asymptotic confidence intervals for Gini’s inequality measure
Gratis digital
![]() Articolo
Promozione valida fino al 02/12/2023
|
Ebook in formato Pdf leggibile su questi device:
|
|
Statistical inference for inequality measures has been of considerable interest in recent years. Income
studies often deal with very large samples, hence precision would not seem a serious issue.
Yet, in many empirical studies large standard errors are observed (Maasoumi, 1997). Therefore, it
is important to provide methodologies to assess whether differences in estimates are statistically significant.
This paper presents an analysis of the performance of asymptotic confidence intervals for
Gini’s index, virtually the most widely used inequality index. To determine minimum sample sizes
assuring a given accuracy in confidence intervals, an extensive simulation study has been carried
out. A wide set of underlying distributions has been considered, choosing from specific models for
income data. As expected, the minimum sample sizes are seriously affected by some population
characteristics as tail heaviness and asymmetry. However, in a wide range of cases, it turns out that
they are smaller than sample sizes actually used in social sciences.
|
|
News
16.05.2023
Psicologia dell'adozione e dell'affido familiare
Mercoledì 7 giugno alle 17:00 presentazione di "Psicologia dell'adozione e dell'affido familiare" in Università Cattolica.
05.04.2023
Acquista sul nostro sito: zero spese di spedizione
Spedizione gratuita dei libri con DHL dove vuoi, promo attiva fino al 21 giugno su tutti i titoli.
24.05.2023
Dibattito sul "Sud" di Borgomeo a Roma
Il 13 giugno a Roma si parla di "Sud. Il capitale che serve" di Borgomeo con Quagliarello, Francesco Profumo, Graziano Delrio, Nicola Rossi e Raffaele Fitto.
31.05.2023
Economia umana: studiosi a confronto a Pisa
Giovedì 8 giugno alle 15:30, la presentazione del volume di Domenico Sorrentino su Giuseppe Toniolo.
Archivio rivista
Articoli Online First
A Data-Driven Approach to Multivariate Monte Carlo Simulation
Application of Nonparametric Stability Methods in Chickpea (Cicer Arietinum L.) Crop Under Diverse Environments
Application of Nonparametric Stability Methods in Chickpea (Cicer Arietinum L.) Crop Under Diverse Environments
Articoli Open Access
A Data-Driven Approach to Multivariate Monte Carlo Simulation
Application of Nonparametric Stability Methods in Chickpea (Cicer Arietinum L.) Crop Under Diverse Environments
Application of Nonparametric Stability Methods in Chickpea (Cicer Arietinum L.) Crop Under Diverse Environments
Ultimi 3 numeri
STATISTICA & APPLICAZIONI - 2021 - 2
STATISTICA & APPLICAZIONI - 2021 - 1
STATISTICA & APPLICAZIONI - 2020 - 2
STATISTICA & APPLICAZIONI - 2021 - 1
STATISTICA & APPLICAZIONI - 2020 - 2